37 research outputs found

    Subglacial lakes and hydrology across the Ellsworth Subglacial Highlands, West Antarctica

    Get PDF
    Subglacial water plays an important role in ice sheet dynamics and stability. Subglacial lakes are often located at the onset of ice streams and have been hypothesised to enhance ice flow downstream by lubricating the ice– bed interface. The most recent subglacial-lake inventory of Antarctica mapped nearly 400 lakes, of which ∼ 14 % are found in West Antarctica. Despite the potential importance of subglacial water for ice dynamics, there is a lack of detailed subglacial-water characterisation in West Antarctica. Using radio-echo sounding data, we analyse the ice–bed interface to detect subglacial lakes. We report 33 previously uncharted subglacial lakes and present a systematic analysis of their physical properties. This represents a ∼ 40 % increase in subglacial lakes in West Antarctica. Additionally, a new digital elevation model of basal topography of the Ellsworth Subglacial Highlands was built and used to create a hydropotential model to simulate the subglacial hydrological network. This allows us to characterise basal hydrology, determine subglacial water catchments and assess their connectivity. We show that the simulated subglacial hydrological catchments of the Rutford Ice Stream, Pine Island Glacier and Thwaites Glacier do not correspond to their ice surface catchments

    Plasma Vitamin C and Cancer Mortality in Kidney Transplant Recipients

    Get PDF
    There is a changing trend in mortality causes in kidney transplant recipients (KTR), with a decline in deaths due to cardiovascular causes along with a relative increase in cancer mortality rates. Vitamin C, a well-known antioxidant with anti-inflammatory and immune system enhancement properties, could offer protection against cancer. We aimed to investigate the association of plasma vitamin C with long-term cancer mortality in a cohort of stable outpatient KTR without history of malignancies other than cured skin cancer. Primary and secondary endpoints were cancer and cardiovascular mortality, respectively. We included 598 KTR (mean age 51 +/- 12 years old, 55% male). Mean (SD) plasma vitamin C was 44 +/- 20 mu mol/L. At a median follow-up of 7.0 (IQR, 6.2-7.5) years, 131 patients died, of which 24% deaths were due to cancer. In Cox proportional hazards regression analyses, vitamin C was inversely associated with cancer mortality (HR 0.50; 95%CI 0.34-0.74; p <0.001), independent of potential confounders, including age, smoking status and immunosuppressive therapy. In secondary analyses, vitamin C was not associated with cardiovascular mortality (HR 1.16; 95%CI 0.83-1.62; p = 0.40). In conclusion, plasma vitamin C is inversely associated with cancer mortality risk in KTR. These findings underscore that relatively low circulating plasma vitamin C may be a meaningful as yet overlooked modifiable risk factor of cancer mortality in KTR

    Freeze-Dried Somatic Cells Direct Embryonic Development after Nuclear Transfer

    Get PDF
    The natural capacity of simple organisms to survive in a dehydrated state has long been exploited by man, with lyophylization the method of choice for the long term storage of bacterial and yeast cells. More recently, attempts have been made to apply this procedure to the long term storage of blood cells. However, despite significant progress, practical application in a clinical setting is still some way off. Conversely, to date there are no reports of attempts to lyophilize nucleated somatic cells for possible downstream applications. Here we demonstrate that lyophilised somatic cells stored for 3 years at room temperature are able to direct embryonic development following injection into enucleated oocytes. These remarkable results demonstrate that alternative systems for the long-term storage of cell lines are now possible, and open unprecedented opportunities in the fields of biomedicine and for conservation strategies

    She\u27s So Bubbly

    Get PDF
    We introduce the Automatic Learning for the Rapid Classification of Events (ALeRCE) broker, an astronomical alert broker designed to provide a rapid and self-consistent classification of large etendue telescope alert streams, such as that provided by the Zwicky Transient Facility (ZTF) and, in the future, the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST). ALeRCE is a Chilean-led broker run by an interdisciplinary team of astronomers and engineers working to become intermediaries between survey and follow-up facilities. ALeRCE uses a pipeline that includes the real-time ingestion, aggregation, cross-matching, machine-learning (ML) classification, and visualization of the ZTF alert stream. We use two classifiers: a stamp-based classifier, designed for rapid classification, and a light curve–based classifier, which uses the multiband flux evolution to achieve a more refined classification. We describe in detail our pipeline, data products, tools, and services, which are made public for the community (see https://alerce.science). Since we began operating our real-time ML classification of the ZTF alert stream in early 2019, we have grown a large community of active users around the globe. We describe our results to date, including the real-time processing of 1.5 × 10⁸ alerts, the stamp classification of 3.4 × 10⁷ objects, the light-curve classification of 1.1 × 10⁶ objects, the report of 6162 supernova candidates, and different experiments using LSST-like alert streams. Finally, we discuss the challenges ahead in going from a single stream of alerts such as ZTF to a multistream ecosystem dominated by LSST

    Metaheuristics for Transmission Network Expansion Planning

    Get PDF
    This chapter presents the characteristics of the metaheuristic algorithms used to solve the transmission network expansion planning (TNEP) problem. The algorithms used to handle single or multiple objectives are discussed on the basis of selected literature contributions. Besides the main objective given by the costs of the transmission system infrastructure, various other objectives are taken into account, representing generation, demand, reliability and environmental aspects. In the single-objective case, many metaheuristics have been proposed, in general without making strong comparisons with other solution methods and without providing superior results with respect to classical mathematical programming. In the multi-objective case, there is a better convenience of using metaheuristics able to handle conflicting objectives, in particular with a Pareto front-based approach. In all cases, improvements are still expected in the definition of benchmark functions, benchmark networks and robust comparison criteria

    Economic Globalization, Nutrition and Health: a review of quantitative evidence

    Get PDF
    BACKGROUND: Unhealthy dietary patterns have in recent decades contributed to an endemic-level burden from non-communicable disease (NCDs) in high-income countries. In low- and middle-income countries rapid changes in diets are also increasingly linked to malnutrition in all its forms as persistent undernutrition and micronutrient deficiencies continue to coexist with a rising prevalence of obesity and associated NCDs. Economic globalization and trade liberalization have been identified as potentially important factors driving these trends, but the mechanisms, pathways and actual impact are subject to continued debate. METHODS: We use a ‘rigorous review’ to synthesize evidence from empirical quantitative studies analysing the links between economic globalization processes and nutritional outcomes, with a focus on impact as well as improving the understanding of the main underlying mechanisms and their interactions. FINDINGS: While the literature remains mixed regarding the impacts of overall globalization, trade liberalization or economic globalization on nutritional outcomes, it is possible to identify different patterns of association and impact across specific sub-components of globalization processes. Although results depend on the context and methods of analysis, foreign direct investment (FDI) appears to be more clearly associated with increases in overnutrition and NCD prevalence than to changes in undernutrition. Existing evidence does not clearly show associations between trade liberalization and NCD prevalence, but there is some evidence of a broad association with improved dietary quality and reductions in undernutrition. Socio-cultural aspects of globalization appear to play an important yet under-studied role, with potential associations with increased prevalence of overweight and obesity. The limited evidence available also suggests that the association between trade liberalization or globalization and nutritional outcomes might differ substantially across population sub-groups. Overall, our findings suggest that policymakers do not necessarily face a trade-off when considering the implications of trade or economic liberalization for malnutrition in all its forms. On the contrary, a combination of nutrition-sensitive trade policy and adequate regulation of FDI could help reduce all forms of malnutrition. In the context of trade negotiations and agreements it is fundamental, therefore, to protect the policy space for governments to adopt nutrition-sensitive interventions

    Study of the effect of amino-functionalized multiwall carbon nanotubes on dry sliding wear resistance properties of carbon fiber reinforced thermoset polymers

    Full text link
    This work investigates the effect of multiwall carbon nanotubes (MWCNTs) on the mechanical and tribological behavior of a fiber reinforced composite (FRC). Fiber reinforced composites and nano-engineered FRCs are manufactured by resin transfer molding. In-plane tensile tests, in-plane shear tests and through-thickness compression tests are used to assess the influence of MWCNTs on the material mechanical behavior. Pin on disk dry sliding tests are used to quantify the effect of MWCNTs on the friction coefficient and the specific wear rate. It was determined that (1) MWCNTs have an influence on the improvement on both the through-thickness compression strength and the specific wear rate, and (2) they do not influence the material stiffness, in-plane tensile and shear strengths and the friction coefficient. It is assumed that the observed improvements are due to the demonstrated positive influence of the MWCNTs effect on the matrix/reinforcement interfacial strength and on the matrix fracture toughness

    Chusquea quila, a Natural Resource from Chile: Its Chemical, Physical, and Nanomechanical Properties

    No full text
    Chusquea quila or 'quila', is one of the most abundant lesser-known species from Chile, and for many years it has created problems for farmers in the southern part of this country. In this study, it was examined as a promising resource for high-tech materials. The chemical and physical properties were determined by ASTM standards. The extractives, ash content, lignin, and alpha-cellulose were 4.55%, 2.17%, 13.78%, and 54.65%, respectively. The higher heating value and basic density obtained were 5,106 kcal/kg and 290 kg/m(3), respectively. The moisture content was studied during four seasons and found to be the highest in winter (73%). Regarding the nanomechanical profiles, hardness varied from 0.16 GPa in the cortex to 0.21 GPa in the nodule. The average elastic modulus in the nodule and internode was 12.5 GPa, while in the cortex it was 7.45 GPa. Considering the high cellulose content and structural features of the lignocellulosic matrix, it could be possible to extract cellulose fibers for commercial use and crude lignin for testing new applications. Thus, the entire quila structure is a potential biomass resource

    Chusquea quila, a Natural Resource from Chile

    Get PDF
    Chusquea quila or "quila", is one of the most abundant lesser-known species from Chile, and for many years it has created problems for farmers in the southern part of this country. In this study, it was examined as a promising resource for high-tech materials. The chemical and physical properties were determined by ASTM standards. The extractives, ash content, lignin, and alpha-cellulose were 4.55%, 2.17%, 13.78%, and 54.65%, respectively. The higher heating value and basic density obtained were 5,106 kcal/kg and 290 kg/m(3), respectively. The moisture content was studied during four seasons and found to be the highest in winter (73%). Regarding the nanomechanical profiles, hardness varied from 0.16 GPa in the cortex to 0.21 GPa in the nodule. The average elastic modulus in the nodule and internode was 12.5 GPa, while in the cortex it was 7.45 GPa. Considering the high cellulose content and structural features of the lignocellulosic matrix, it could be possible to extract cellulose fibers for commercial use and crude lignin for testing new applications. Thus, the entire quila structure is a potential biomass resource.Peer reviewe
    corecore